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ABSTRACT 

Plug-in electric vehicles (PEVs) are widely regarded as an important component of the 

technology portfolio designed to accomplish policy goals in sustainability and energy security. 

However, the market acceptance of PEVs in the future remains largely uncertain from today’s 

perspective. By integrating a consumer choice model based on nested multinomial logit and 

Monte Carlo Simulation, this study analyzes the uncertainty of PEV market penetration using 

Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and 

there is a substantial risk of low penetration  in the early and mid-term market. Top factors 

contributing to market share variability are price sensitivities, energy cost, range limitation and 

charging availability.  The results also illustrate the potential effect of public policies in 

promoting PEVs through investment in battery technology and infrastructure deployment. 

Continued improvement of battery technologies and deployment of charging infrastructure alone 

do not necessarily reduce the spread of market share distributions, but may shift distributions 

toward right, i.e., increase the probability of having great market success.  

 

Key Words:  energy transition, electric vehicles, market penetration, charging infrastructure, 

Monte Carlo simulation, consumer choice 
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1 INTRODUCTION 

Achieving a sustainable transportation future implies a transition from petroleum-based, internal 

combustion engine (ICE) vehicles to ones powered by alternative fuels (NRC, 2013; Greene et 

al., 2013; GEA, 2012). Plug-in electric vehicles (PEVs), including plug-in hybrid electric 

vehicles (PHEV) and battery electric vehicles (BEVs), received much attention in recent years. 

Since the introduction of Nissan Leaf and Chevrolet Volt in December, 2010, the cumulative 

sales of PEVs in the United States exceed 160,000.  Announced by President Obama in March 

2012, EV Everywhere initiative aims “to produce PEVs as affordable and convenient for the 

American family as gasoline-powered vehicles by 2022” (U.S.DOE, 2013).  China, Japan, and 

Europe also set targets and launched major initiatives for promoting PEVs. For example, China 

has set ambitious targets of having 5 million PEVs on the road by 2020. Central and local 

governments are offering generous subsidies to PEV purchase, sales tax exemption, and even 

experimenting free license plate in certain cities, which could be very expensive (e.g. $12000 a 

license plate in Shanghai).  However, the success of PEVs needs to overcome major barriers, 

such as high vehicle price, BEV's limited range and long charging time, consumers’ aversion to 

the risk of new technologies, and the availability of charging infrastructure. Furthermore, there is 

substantial uncertainty in technology progress, consumer preferences, and infrastructure 

deployment. Therefore, the market penetration of PEVs is highly uncertain from today’s 

perspective.  

 

Improved understanding of the uncertainty is needed to inform public policy making. The 

objective of this paper is to quantify the uncertainty of PEV market penetration by Monte Carlo 

simulation. More specifically, the paper tries to answer the following questions: 
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1. What is the approximate distribution of PEV market shares in future years?  

2. What are key factors that contribute to the variability of PEV penetration? 

Answering these questions has important policy implications. Enhanced understanding of future 

PEV market uncertainty helps estimate environmental and energy benefits of PEVs. Identifying 

important factors helps make better policies by allocating limited resources effectively to key 

areas.  

 

Few work in the literature studied the uncertainty of alternative fuel-powered vehicle market 

penetration. Greene et al. (2013) and Lin et al. (2013) investigated the sensitivity of hydrogen 

fuel cell vehicles to technology progress, infrastructure availability, and consumer preferences. 

However, the two studies didn’t perform comprehensive uncertainty analysis. This paper is 

among the first that examines the uncertainty of PEV penetration by combining a consumer 

choice model with Monte Carlo simulation. With the help of the @Risk software (Palisade 

Corp.), this paper uses Monte Carlo simulation to understand the magnitude and contributing 

factors of PEV market uncertainty.  

2 APPROACH 

The basic approach in this study is Monte Carlo simulation using the Market Acceptance of 

Advanced Automotive Technologies (MA3T) model and @Risk.  The MA3T (Lin, 2012) is an 

Excel-based market simulation model that estimates market shares of various vehicle 

technologies from 2010 to 2050. @Risk is a commercial software package that performs risk 

analysis using Monte Carlo simulation to show many possible outcomes in a spreadsheet model 

and probability of each outcome. The first step is to select a set of model parameters and specify 

their probability distributions. Then at each simulation, @Risk will sample the set of parameters 
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and call MA3T to estimate vehicle market shares.  Summary statistics can be extracted after the 

simulation, such as probability distributions of market shares and tornado graphs showing key 

factors determining market outcomes.   

 

One approach for forecasting the market penetration of alternative fuel powered vehicles is based 

on Bass diffusion theory (Bass, 1969, 2014). Example studies include Becker et al. (2009) and 

Mabit and Fosgerau (2011). The major limitation of this approach is the lack of the connections 

between many influence factors and market share. Another more popular approach is to use 

discrete choice models. Transportation economists have estimated various discrete choice 

models using stated and/or revealed survey data. For example, Brownstone et al. (1996) 

estimated a multinomial logit model (MNL) using California stated survey data with the choice 

set of gasoline and electric vehicles. Later Brownstone and co-authors (2000) estimated a MNL 

and a mixed logit model using both revealed and stated survey data. Ito et al. (2013) estimated a 

nested multinomial logit (NMNL) model for Japan market using stated survey and the choice set 

includes gasoline, hybrid, electric, and fuel cell vehicles. These econometrics models typically 

do not intend to make predictions and the focus is to understand the relationships between 

variables.  

 

Prediction models are designed to forecast long term penetration level of alternative fuel vehicles 

in response to changes in technology, policies, and market conditions. An early pioneer in this 

area is Transition toward Alternative Fuel Vehicles: TAFV (Greene,2001). The model is built 

upon the foundation of discrete choice theory while also incorporating transition dynamics. As 

an illustration, the model specifically captures manufacturers’ learning by doing and scale 
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economy effects and results manufacturing cost reduction as vehicle sales increase. Other similar 

models include LAVE-Trans (Greene and Liu,2013) and EMOB (Gosh et al.,2011). EMOB also 

considers the interaction between car market and other related industry sectors.  The MA3T 

model is a further development of TAFV with the most notable improvement in market 

segmentation. The details of MA3T model can be found in the report (Lin and Greene, 2010). 

The following section provides a brief overview of the model so that readers can better 

understand simulation results. 

2.1 THE MA3T MODEL 

Developed by Oak Ridge National Laboratory (ORNL) for the U.S. Department of Energy, the 

MA3T is a nested multinomial logit (NMNL) model that estimates future market shares of 17 

powertrain technologies, separately for passenger cars and light trucks.  

2.1.1 Nested Structure and Model Equations 

The technology set includes conventional gasoline and diesel vehicles, hybrid, plug-in hybrid, 

battery electric, and fuel cell vehicles.  These technology choices are nested according to the 

structure in Figure 1. Technology abbreviations are explained in Table 2.  At the top of the 

structure is the choice of buying a new light-duty vehicle (LDV) or not. Under the buying nest is 

the choice between a passenger car and a light-duty (LD) truck.  Within each vehicle type 

consumers choose among different powertrain technologies, grouped into three classes: (1) 

conventional/HEV, (2) hydrogen, and (3) battery-electric vehicles.  Within the conventional 

/HEV class, technologies are grouped into conventional internal combustion engines (Spark 

Ignition Conv, Compression Ignition Conv, and Natural Gas Conv), hybrid electric vehicles
1
 (SI 

                                                 
1
 Note that hybrid electric vehicles are not really electric vehicles, as they are powered by liquid fuels and cannot 

plug into off-board sources of electricity. The battery on board is charged by regenerative braking and the internal 

combustion engine. The energy from the battery can provide extra power to the vehicle during acceleration. Thus, 
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HEV,CI HEV, and NG HEV), and SI PHEVs.  SI PHEVs come in three types according to their 

on-board electricity storage capacity and electric motor power: SI PHEV10, SI PHEV20, and SI 

PHEV40. Within the Hydrogen class, technologies are grouped into Hydrogen internal 

combustion engines, fuel cell HEV, and fuel cell plug-in HEV (FC PHEV10, FC PHEV20, FC 

PHEV40). 

 

The probability that a consumer will choose technology i, given a choice among the vehicles in 

nest jkl, is given by the following equation.   

 |

jkl ijkl

jkl hjkl

c

i jkl c

h
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e










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In equation 1, cijkl is the generalized cost, or utility value in present value dollars of technology i 

in nest jkl.  The parameter βjkl determines the sensitivity of technology choices in nest jkl to their 

generalized cost.  Each technology’s generalized cost is comprised of a weighted sum of 

functions of the values of its attributes.  Let the z
th

 attribute’s value be represented by xzijkl , its 

function be fz(xzijkl), and its weight wzjkl .  The generalized cost for choice ijkl is given by 

equation 2. 

   ijkl zjkl z zijkl

z

c w f x  (1) 

 

At present the following attributes are included in the generalized cost function. 

 vehicle retail price 

 fuel and electricity cost 

                                                                                                                                                             
the name of “hybrid electric vehicle” does not accurately reflect the technology nature of the vehicle. It is used in 

this paper to be consistent with common usage. 
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 battery replacement cost 

 range 

 home backup power 

 refueling and recharging accessibility cost 

 make/model availability 

 technology risk 

 policies 

 purchase subsidy, tax credit, HOV access, free parking, etc 

 

Generalized costs of the choices within a lower nest are “averaged” and passed up to the next 

level.   

 1 ln( )jkl ijkl

jkl

c

jkl

i

c e





    (1) 

The choice among nests at the next level is a logit function of their generalized costs, cjkl , and 

price sensitivity at the next level, represented by βkl. The unconditional choice probability for 

technology i in nest jkl, is the product of the conditional choice probabilities. 

 | | |ijkl i jkl j kl k l lp p p p p  (1) 

 

The model parameters, price sensitivity and the value consumers attach to vehicles’ attributes, 

are not estimated from a single survey, but calibrated to the best available evidences in the 

literature (e.g. available revealed preference and stated preference surveys and sales data). A 

detailed review of the literature evidences and the calibration can be found in the report (Greene 

and Liu,2012). This is consistent with the “synthetic utility function” approach promoted by 
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Massiani (2012), which argues analyses relying on a single survey are at risk of bearing the bias 

of the survey method and the promoted approach allows for more robust market penetration 

analysis and policy recommendation.  

 

Alternative specific constants in the model are calibrated to currently available vehicle sales data 

in the U.S. (e.g., PEV data is available from 2011 to 2014). Alternative specific constants (ASCs) 

in the model are calibrated to currently available vehicle sales data in the U.S. (e.g., PEV data is 

available from 2011 to 2014).  Note that ASCs reflect the mean of unobserved attributes. ASCs 

will be large negative numbers if a consumer choice model fails to include those factors which 

are barriers to PEV penetration, such as lack of charging availability/range anxiety, less make 

and model diversity, and risk aversion for novel technologies. The model may generate 

misleading results when forecasting PEV market penetration because those non-technology 

factors will be changing as the market evolves (Massiani,2014). Remedying this issue makes it 

necessary to use a modeling framework which not only captures those important non-technology 

factors in the utility function but also formulates the evolution of these factors as functions of the 

market conditions.  The MA3T model is developed according to this principle. In particular, it 

includes feedback loops, where non-technology factors influence next year sales which in turn 

change non-technology factors one year after. The details of the feedback mechanism can be 

found in the references (NRC,2013; Greene et al.,2013).  

 

ASCs for PEVs in the future years are assumed to converge toward conventional vehicles, 

reflecting our belief that unobserved attributes of PEVs may eventually be similar to those of 

conventional vehicles. A reviewer points out this assumption is discussible as some attributes of 
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PEVs remain a handicap net of attributes already accounted for in the utility function. We 

acknowledge the disagreement and note that our assumption is made for modeling convenience 

and it is just one plausible scenario for the future market development.   

 

The model’s short-term prediction accuracy is validated by backcasting and comparing with 

actual market shares. The validation error is small.   

 

2.1.2 Market Segmentation 

MA3T includes a detailed segmentation of the motor vehicle market to better represent 

systematic heterogeneity in consumer demand. Each market segment is a different 

“representative consumer” with distinct attributes and preferences. The targeted U.S. light-duty 

vehicle consumers are divided into 1,458 segments based on 6 dimensions: census divisions, 

residential areas, attitudes toward novel technologies, driving patterns, home recharging 

situations, and work recharging situations (Table 1). Within each of nine Census regions light-

duty vehicle sales are divided among urban, suburban and rural areas. Within each area sales are 

further subdivided according to consumers’ attitudes to the risk of novel technologies, using the 

three basic groups of diffusion theory (Rogers, 1962): early adopters, early majority, and late 

majority. Within each risk group, there are three levels of intensity of vehicle usage, described by 

daily driving distributions. The daily driving distributions have important implications for the 

functionality of limited range of BEVs and for the shares of electricity and gasoline use by 

PHEVs (Lin and Greene, 2011a). The market is further split according to the availability of 

charging facility. 
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2.1.3  Model Input and Output 

MA3T takes input of technology attributes, consumer preferences, infrastructure availability, 

energy prices, and policies and estimates choice probabilities of each vehicle technology for each 

market segment.  

 

The choice probabilities are then used to calculate market shares, vehicle sales and stock, 

petroleum use, and greenhouse gas (GHG) emissions. Some of the outputs serve as feedback 

signals and affect the purchase probabilities in the next year. For example, vehicle stock at year t 

affects vehicle price at year t+1 through the manufacturer learning by doing, and affects 

consumers’ risk preference for the technology at year t+1 as well; vehicle sales at year t affects 

make/model diversity of the technology at year t+1.  

 

The input to MA3T is from various sources. Vehicle technology attributes are taken from the 

Argonne National Laboratory’s (ANL’s) Autonomie model (http://www.autonomie.net/). The 

baseline values of vehicle prices are listed in Table 3.   

 

Energy prices are from Annual Energy Outlook (AEO) published by the U.S. Energy 

Information Administration (EIA). The size of each consumer segment is estimated using census 

data and surveys. These inputs are relatively reliable for short term market prediction but subject 

to substantial uncertainty for mid and long term predictions. Therefore it is useful to perform 

uncertainty analysis using Monte Carlo simulation. 
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2.2 Simulation Settings 

Before conducting Monte Carlo Simulation, @Risk requests users to specify probability 

distributions for parameters which will be sampled in the simulation. According to their potential 

importance in impacting market outcomes, we have selected 19 model parameters, which can be 

grouped into energy prices, technology, market behavior and consumer preference, and 

infrastructure availability. Their probability distributions are summarized in Table 4.  Parameters 

are assumed to follow uniform distribution if no additional information is available to fit 

parameters to other distributions. The definition of each parameter is explained in the sections 

titled Energy Prices, Technology, Market Behavior and Consumer Preferences, and 

Infrastructure Availability. 

 

2.2.1 Energy Prices 

Gasoline and diesel prices directly determine fuel cost of ICE vehicles and they are subject to 

deep uncertainty in the future. The baseline gasoline/diesel prices are from AEO 2012 Reference 

Case (U.S.DOE/EIA, 2012). In the simulation, these prices are varied by ±50%, as controlled by 

gasoline and diesel price multiplier (#1 in Table 4), which is assumed to follow triangular 

distribution and range from 0.5 to 1.5. 

 

2.2.2 Technology 

High Battery cost is a major barrier to PEV penetration. The baseline values of battery cost 

($/kwh) is taken from Autonomie (Figure 2). The progress of battery cost reduction can be varied 

in the simulation, either accelerated or delayed up to five years (#2 in Table 4).  
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MA3T simulates learning by doing effect of vehicle manufacturing, i.e., vehicle cost declines as 

more vehicles are produced and manufacturers learn from the production experience. The 

manufacturer learning rate determines the “progress ratio”, which describes the effect of 

doubling cumulative production on vehicle price. Despite the substantial empirical evidence for 

learning effect there is no theory that can be used to predict the learning rate or progress ratio for 

a new product. Instead, researchers often base their assumptions on historical experience with 

similar production processes. While historical data provides useful reference points, this method 

of selecting a learning rate is ultimately an educated guess. The default learning rate is 6.114e-6, 

corresponding to a progress ratio of 0.96. The default learning rate is assumed to vary by ±50% 

in the simulation (#3 in Table 4).  

 

2.2.3 Market Behavior and Consumer Preferences 

There is a great deal of uncertainty about how the market will respond to alternative vehicles and 

fuels over the next several decades.  The uncertainty is simulated along the following lines: 

(1) the sensitivity of car buyers’ choices to price, (2) PEV make and model diversity, (3) the 

value of time, (4) the perceived cost of range assurance for BEVs, and (5) how will the market 

value the risk and innovativeness of advanced technologies. 

 

Car buyers’ sensitivity to price is of central importance to the market success of advanced 

technologies. Higher price sensitivity implies that consumers will switch from one alternative to 

another for even a small change in value. A lower sensitivity implies that even apparently 

inferior products will attract some buyers. In the simulation, price sensitivity (# 4 in Table 4) 

varies by ±50% relative to the baseline assumption in MA3T. 



Liu and Lin  12 

12 

 

 

Compared with conventional vehicles, PEVs have less make and model diversity and thus may 

lose attractiveness to some car buyers. Two model parameters are relevant: market provision of 

PEV makes and models (#5 in Table 4) and the value of make and model diversity to consumers 

(#6 in Table 4).  Both values vary by ±50% in the simulation.  

 

Refueling convenience is particularly important for vehicles with limited refueling infrastructure 

(e.g., fuel cell vehicles). MA3T quantifies the cost of refueling inconvenience by estimating the 

additional detour time on road in order to refuel. Thus refueling cost is a function of refueling 

infrastructure availability, consumer value of time, and vehicle range.  The MA3T default value 

of time (#7 in Table 4) is $20/hour and it varies by ±50% in the simulation. 

 

Major barriers to BEV market penetration are its limited range and long recharging time, which 

implies that the BEV may not be usable on days when a driver’s travel distance exceeds the 

vehicle’s range. In the MA3T model, the cost of this limitation is represented by a fixed charge 

for each day the BEV’s range is less than the desired daily driving distance (based on empirically 

estimated daily vehicle travel distributions).  The fixed charge per day should be in line with the 

cost of different options: cancelling the trips, substitution for a gasoline vehicle in the household, 

substitution for a rental car, and switching to other transportation modes. Depending on the 

household’s preferences and other characteristics (e.g., the availability of a gasoline vehicle in 

the household), the cost perceived by consumers are expected to vary widely. The baseline value 

(#8 in Table 4) is varied by ±50% in the simulation. 
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Because of the large differences in energy efficiency among drive train technologies, the cost of 

energy valued by consumer could be an important factor in choices among technologies. The 

default assumption of the MA3T model is that consumers will consider 5 years of future fuel 

costs discounted to present value at 7% per year. This is consistent with assumptions used in the 

Department of Transportation/National Highway Transportation Safety Administration fuel 

economy rulemaking (U.S.EPA/DOT, 2012). However, the economic literature reflects widely 

differing interpretations of consumers’ willingness to pay for fuel economy (Greene, 2010). Thus 

the simulation varies perceived vehicle life (#9 in Table 4) in the range of 2.5 to 7.5 years, 

following a triangular distribution. For BEVs, perceived vehicle life is also related to how 

consumers estimate range assurance cost. The impact of perceived vehicle life on BEV share is a 

mixed effect: the longer perceived vehicle life, the larger perceived energy cost savings but the 

bigger range assurance cost. 

 

How the market values the risk and innovativeness of advanced technologies is another area that 

is largely unknown yet important to purchase decisions. MA3T segments the market into early 

adopters, early majority, and late majority. But very little is known about the percentage of each 

group. MA3T default is 10%, 37% and 53% respectively. The simulation varies the percentage 

of early adopters (#10 in Table 4) in the range of 5% to 15% while partitioning the remaining 

market in such a way that the ratio of early majority and later majority is always 0.37/0.53. It is 

assumed that early adopters are willing to pay (WTP) for innovativeness of advanced 

technologies and by contrast, early and late majority are averse to the risk of them. WTP and risk 

aversion cost decline as more vehicles are on road. Cumulative sales at which WTP/risk aversion 
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is reduced by ½ control the decline rate. Both WTP/risk aversion cost and decline rate (#11 - #16 

in Table 4) will vary by ±50% in the simulation.   

 

2.2.4 Infrastructure Availability 

Charging infrastructure can be described by location (home, workplace, and public) and charging 

speed (Level 1, 2, and DC fast charging
2
). Level 1 charging uses a standard 110 volt, 15-20 

usable ampere circuit. Level 1 recharging is slow, taking more than 20 hours to fully charge a 

Nissan Leaf.  Level 2 charging uses a 220 volt, 40 ampere circuit and requires much shorter 

charge time. With Level 2 charging, a full recharge requires less than 4 hours for a Nissan Leaf. 

DC fast charging uses a 440 volt, three-phase circuit, typically providing 60-150 kW of off-board 

charging power. DC fast charging may not be necessary at home or even workplace where 

vehicle parking duration is normally long, but would be very useful in public places like 

shopping mall or along highways.  

 

Home recharging is probably the most important because home is where vehicles park most 

often and longest and charging at home adds little hassle to drivers (Lin and Greene, 2011b). 

Workplace and public charging extends the electric range and thus enables more energy cost 

savings for PHEVs and improves feasibility of BEV operation (Dong et al., 2014; Dong and Lin, 

2012).  Based on several sources (Lin and Greene, 2010; Kurani et al., 2009; Axsen and Kurani, 

2009), charging availability in base year of 2010 is assumed that 52% of consumers have Level 1 

home charging and the rest do not have home charging; 5% of consumers have Level 1 

workplace charging in 2010 and the rest do not have workplace charging; public charging 

                                                 
2
 Ultra-fast charging that can fully charge a EV within minutes is not considered in this study 
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availability in 2010 is zero, i.e., the probability that an charging opportunity is available at a 

visited public place is zero. The following scheme is used to simulate future charging availability 

uncertainty. First, home Level 2, workplace and public charging availability are assumed to 

linearly increase to 2050 level, whereas home Level 1 linearly decrease to 2050 level. Home 

Level 1 availability decrease rate is one half of home Level 2 increase rate, i.e., half of home 

Level 2 are installed in houses with Level 1 chargers and thus replace them and half of Level 2 

are installed in houses without Level 1 chargers. Second, home Level 2 availability at 2050 (#17 

in Table 4) is assumed to follow a uniform distribution with minimum value of 25% and 

maximum value of 75%. Same distributions are assumed for workplace and public charging 

availability (#18-#19 in Table 4). The availability level of home, workplace, and public charging 

are likely correlated. @Risk allows users to specify a correlation matrix to represent correlations 

of random variables and the simulation will sample the variables according to the matrix. We 

have experimented with the following matrix (Table 5). The design is by no means definitive, 

but just used to illustrate the effect of possible correlations in uncertainty simulation.  

3 RESULTS 

One thousand simulations were carried out using the probability distributions for the 19 

parameters shown in Table 4.  All parameters, except home, workplace, and public charging 

availability, are assumed to be independent.  Charging availability parameters are correlated 

according to the correlation matrix in Table 5.  Simulation results are summarized as follows.  
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3.1 Market Share Uncertainty 

Market shares at the baseline scenario are shown in Figure 3, where parameter values are in 

MA3T default level, i.e., mean values in Table 4. In 2050, PEV share is 50%, with BEV 29% 

and PHEV 21%. Conventional vehicles (gasoline and diesel vehicles) still account for 34% of 

new vehicle sales and the remainder is HEV sales. The drop of PHEV and BEV market shares 

around 2017 is due to expiration of the current PEV federal incentive. 

 

The simulated uncertainty about the market’s response to PEVs is illustrated by Figure 4, which 

shows the mean, 5% and 95% percentile, and ± 1 standard deviation of each year’s PEV market 

share. Note that the mean market share curve doesn’t correspond to the baseline scenario in 

Figure 3.   

 

Further details of the market response are shown by Figure 5, the frequency distributions for the 

market shares of PHEVs and BEVs in 2030 and 2050.  PHEV share distribution in 2030 ranges 

from 0 to 30% with a mean of 10%. It has a “spike” near zero, indicating the risk of low 

penetration of PHEVs. PHEV share distribution in 2050 has the similar range with a higher mean 

of 17%. The “spike” near zero still exists in 2050, though much smaller.  On the other hand, 

distributions for BEV shares in 2030 and 2050 are relatively more symmetric with mean values 

of 11% and 28% respectively.  
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The “spike” of PHEV distributions was further investigated. A key factor is the relatively high 

prices of PHEVs.  Table 2 shows that PHEV prices are still significantly higher than 

conventional ICE vehicles even in 2050. We also found that scenarios with low PHEV 

penetration (PHEV share in 2030 is less than 10% percentile of its distribution) all have very 

high price sensitivities (>90% percentile of the parameter’s distribution) and high value of 

make/model diversity (>82% percentile). Therefore higher upfront purchase price, coupled with 

consumers’ high sensitivity to price and strong valuation of make/model diversity, may imply 

very low PHEV penetration. By contrast, BEV prices decrease rapidly after 2030 and are only a 

few hundred dollars more expensive than ICE vehicles in 2050. This ensures that BEVs achieve 

moderate penetration even under unfavorable conditions such as high price sensitivity, low 

gasoline/diesel prices and high value of make/model diversity (see Figure 5 that shows minimum 

BEV share in 2050 is 12%).  

 

The simulation results demonstrate that the future market for electric drive vehicles is highly 

uncertain and there is substantial risk in the early and mid-term PEV market. The next section is 

devoted to a comprehensive analysis of key factors that influence PHEV and BEV market shares.  

 

3.2 Key Determinants 

Tornado charts are used to show the relative importance of input parameters in contributing to 

the variability of PEV penetration. On the left of tornado charts are input parameters ranked 

according to their importance, with the most important parameter at the top. On the right are bars 

with the length indicating the strength of the correlation between parameters and PEV shares. 
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The number along a bar is the parameter’s regression coefficient, representing the change of 

market share in the unit of its stand deviation if the input parameter changes by one standard 

deviation. For example, the most top coefficient in Figure 6 reads that PHEV share in 2030 

decreases by 0.78 standard deviations if price sensitivity increases by one standard deviation and 

other parameters are held constant in their baseline values.  

 

Figure 6 through 9 are tornado charts for PHEV and BEV shares in 2030 and 2050. Here are 

some observations: 

 

 Price sensitivity (price slope multiplier bar in tornado charts) is the most important 

parameter for PHEV shares. The sign of price sensitivity bar is negative for 2030 and 

2050 PHEV shares and 2030 BEV share, but positive for 2050 BEV share. 

Insensitivity to price indicates that consumers put less weight on vehicle prices and 

pay more attention to other vehicle attributes (e.g., environmental friendliness of the 

technology) in purchase decision making; whereas high price sensitivity implies that 

consumers will switch from one alternative to another for even a small change in 

price. Therefore, lower price sensitivity is favorable to PEV penetration in early 

period when PEVs are significantly more expensive than competitors like ICEs, On 

the other hand, BEV prices decrease quickly and become comparable to ICE prices in 

2050. Moreover, BEVs have much lower energy cost. Thus higher price sensitivity 

increases BEV market share in 2050.  

 Energy cost perceived by consumers is important to the penetration of both PHEVs 

and BEVs, as indicated by the position of perceived vehicle life and gasoline/diesel 
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prices bars on the charts. Perceived vehicle life determines how many years of energy 

cost savings consumers will value in purchase decisions and thus positively correlates 

with PHEV share. However, for BEVs, perceived vehicle life is also related to how 

consumers estimate range assurance cost. The model calculates range assurance cost 

as the product of penalty cost per day and the number of days in the vehicle’s lifetime 

at which daily mileage exceeds BEV’s range. Therefore the impact of perceived 

vehicle life on BEV share is a mixed effect: the longer perceived vehicle life, the 

larger perceived energy cost savings but the bigger range assurance cost. The net 

impact is that longer perceived vehicle life moderately increases BEV market share. 

 Charging infrastructure availability and range assurance cost are critical to the 

success of BEV acceptance. For example, home level 2 availability is the most 

important factor contributing to the variability of BEV share in 2050. The ranking of 

charging availability according to their impact on BEV adoption is home level 2, 

public, and workplace. The ranking is consistent with the perception that level 2 is 

essential to BEVs and home is the most important charging location. Compared with 

workplace charging, public charging provides more assurance for unplanned long 

trips.  

 Progress of battery cost reduction is important to both PHEV and BEV shares in 2030, 

but not so much to PHEV and BEV shares in 2050, since battery costs in different 

scenarios are assumed to converge after 2030 (see Figure 2).  

 How consumers value make and model diversity are negatively correlated with 

PHEV and BEV shares, i.e., the more weight consumers put on make and model 

diversity, the less likely they are to purchase PEVs. This parameter is more important 
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to early market of PEVs than late market. Market provision of PEV make and model 

is also moderately important. 

 The percentage of early adopters is among top factors on all 4 charts. As expected, 

late majority’s risk aversion is negatively correlated to the acceptance of PEV and 

early adopters’ WTP for innovative technologies is positively correlated. Note that 

early adopter’s WTP is represented as a negative cost in the MA3T. Thus the tornado 

charts tell that the larger WTP in absolute value (the smaller WTP), the larger the 

market share is.   

 Tornado charts also show some competition effects between PHEVs and BEVs. For 

example, range assurance cost, one of the biggest barriers for BEVs, turns out to be 

positively correlated to PHEV adoption (see Figure 6 and 8).  

3.3 Effect of Public Policies 

To illustrate the potential role of public policies in PEV market penetration and uncertainty 

reduction, we re-run Monte Carlo simulation by assuming that the progress of battery cost 

reduction is accelerated by 5 years and charging infrastructure deployment is at maximum level 

(75% public and workplace charging availability in 2050). Other model parameters remain as 

probability distributions in Table 4.  Figure 10 demonstrates the effect of accelerated battery 

progress and infrastructure deployment on market penetration. As expected, PEV share 

distribution is shifted upward, but surprisingly, the uncertainty of market share is not noticeably 

reduced, and even increased in the mid-term around 2025. This means that continued battery 

R&D and charging infrastructure deployment alone won’t reduce market share uncertainty, but 

can substantially increase the expected market share. It also implies that the above battery and 
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infrastructure efforts may reduce PEV market risk (i.e. extremely low market share) while 

increasing the chance of great success (i.e. very high PEV market share). 

4 CONCLUSIONS AND DISCUSSIONS 

This study analyzes the uncertainty of PHEV and BEV market penetration using the MA3T 

model and @risk software. With the help of @risk, the MA3T model is run in a Monte Carlo 

simulation setting by sampling probability distributions of 19 parameters in energy price, 

technology progress, market behavior and consumer preferences, as well as charging 

infrastructure availability. The simulation results suggest that the future market for PEVs is 

highly uncertain and there is a substantial risk of low PEV penetration in the early and mid-term 

market. Continued improvement of battery technologies and deployment of charging 

infrastructure alone do not necessarily reduce market share uncertainty, but can help reduce PEV 

market risk (i.e. extremely low market share) while increasing the chance of great success (i.e. 

very high PEV market share). 

 

Top factors that contribute to the variability of PEV market shares are price sensitivities, energy 

cost, range assurance related cost and charging infrastructure availability.  Lower price 

sensitivity is favorable to PEV penetration in the early period, whereas higher price sensitivity 

increases BEV market share in the later period when BEV price is reduced to the level of ICE 

price. Higher gasoline/diesel prices increase the attractiveness of PEVs. Perceived vehicle life 

decides how many years of energy savings are valued by consumers and it has a strong positive 

correlation with PHEV share. However, for BEVs, perceived vehicle life is also related to how 

consumers estimate range assurance cost. The impact of perceived vehicle life on BEV share is a 

mixed effect: the longer perceived vehicle life, the larger perceived energy cost savings but also 
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the bigger range assurance cost. The net effect is that perceived vehicle life is positively 

correlated with BEV market share. Charging availability coupled together with perceived vehicle 

life and inconvenience cost per day when BEV range is insufficient determine range assurance 

cost and contribute most significantly to the variability of BEV shares in later years when BEV 

price is comparable to conventional vehicles. Acceleration of battery cost reduction boosts PEV 

sales in earlier years but has no long term impact.  

 

The study findings are subject to the limitations of the nested logit modeling method (specifically 

the MA3T model), the selected combination of random parameters, and assumed probability 

distributions of random parameters. The combination of random parameters is selected according 

to the literature and also our own judgment. Probability distributions of random parameters have 

been calibrated to the best information available in the literature. However, at this early stage of 

PEV market commercialization, much of the market behavior remains unknown. Simplified 

assumptions have to be used when information is not available. With these caveats, we want to 

caution the readers that the results from the Monte Carlo simulations, particularly, Figure 4 and 5, 

are only an illustration of future market uncertainty. We will feel more comfortable if the readers 

view this study as a sensitivity analysis which varies the parameters of the consumer choice 

model in the space define by the assumptions in Section 2 and examines the response of the 

model – market shares. Thus, those tornado charts in Figure 6 to 9 are probably the most 

important results of this study. 

 

Our intention in this paper is to establish a framework and generate some initial insights toward 

understanding this important issue of PEV market uncertainty. At the minimum, this paper 
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provides a reference, both in terms of study framework and results, for PEV market uncertainty 

studies using nested logit models. It is our hope that this study will stimulate more research in 

learning market behavior. The study itself will be updated when more information is available.  

 

Understanding the uncertainty of PEV market has important implications. First, it provides 

policy makers with a more realistic description of the challenge they face in attempting to 

promote PEVs for accomplishing energy security and emission reduction goals. Second, it helps 

to identify critical factors that influence the acceptance of PEVs. The more that can be learned 

about these factors, the more likely it is that effective and efficient policies can be designed and 

implemented. 
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Figure 1Nesting Structure in the MA3T Model. 
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Figure 2 Battery cost scenarios: Baseline, accelerated by 5 years, and delayed by 5 years. 

 

 

Figure 3  Vehicle technology market shares at the baseline scenario. 
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Figure 4 Distribution for PEV share from 2010 to 2050 generated by Monte Carlo 

simulation. 
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Figure 5 Relative frequency distribution of PEV market shares in 2030 and 2050 generated 

by Monte Carlo Simulation. 
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Figure 6 Tornado chart for PHEV share in 2030. 

 

 

Figure 7 Tornado chart for BEV share in 2030. 
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Figure 8 Tornado chart for PHEV share in 2050. 

 

 

Figure 9 Tornado chart for BEV share in 2050. 
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Figure 10 Effect of accelerated battery technology progress and infrastructure deployment 

on PEV market share: the green area is PEV share distribution given original parameter 

assumptions in Table 4 and yellow curve is mean market share; while the pink shaded area 

is share distribution with accelerated battery cost reduction and infrastructure deployment 

and the black curve is mean market share.  
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Table 1 MA3T Consumer Segmentation 

Region Area Home Charging Work Charging 

01_NewEngland Urban Level I Yes 

02_MiddleAtlantic Suburban Level II No 

03_EastNorthCentral Rural None   

04_WestNorthCentral 

 05_SouthAtlantic 

06_EastSouthCentral   Attitude Driver 

07_WestSouthCentral   Early Adopter Modest Driver 

08_Mountain   Early Majority Average Driver 

09_Pacific   Late Majority Frequent Driver 

 

 

Table 2 List of Technology Abbreviations 

Abbreviation Description 

SI Conv Car Spark Ignition Conventional Car 

CI Conv Car Compression Ignition Conventional Car 

SI HEV Car Spark Ignition Hybrid Electric Car 

CI HEV Car Compression Ignition Hybrid Electric Car 

SI P10 Car Spark Ignition Plug-in Hybrid Electric Car with 10 miles of Charge-

Depleting Range 

SI P20 Car Spark Ignition Plug-in Hybrid Electric Car with 20 miles of Charge-

Depleting Range 

SI P40 Car Spark Ignition Plug-in Hybrid Electric Car with 40 miles of Charge-

Depleting Range 

BEV100 Car Battery Electric Car with 100-mile Range 

BEV200 Car Battery Electric Car with 150-mile Range 

BEV300 Car Battery Electric Car with 250-mile Range 

SI Conv LTK Spark Ignition Conventional Light-duty Truck 

CI Conv LTK Compression Ignition Conventional Light-duty Truck 

SI HEV LTK Spark Ignition Hybrid Electric Light-duty Truck 

CI HEV LTK Compression Ignition Hybrid Electric Light-duty Truck 

SI P10 LTK Spark Ignition Plug-in Hybrid Electric Light-duty Truck with 10 

miles of Charge-Depleting Range 

SI P20 LTK Spark Ignition Plug-in Hybrid Electric Light-duty Truck with 20 

miles of Charge-Depleting Range 

SI P40 LTK Spark Ignition Plug-in Hybrid Electric Light-duty Truck with 40 

miles of Charge-Depleting Range 

BEV100 LTK Battery Electric Light-duty Truck with 100-mile Range 

BEV200 LTK Battery Electric Light-duty Truck with 150-mile Range 

BEV300 LTK Battery Electric Light-duty Truck with 250-mile Range 

 

Table 3 Vehicle Prices in MA3T (2005$) 

Technology 2015 2020 2030 2050 

SI Conv Car $19,795 $21,090 $20,236 $21,347 
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CI Conv Car  $22,284 $24,136 $22,948 $22,715 

SI HEV Car   $24,178 $25,970 $25,672 $24,495 

CI HEV Car   $30,184 $29,062 $26,864 $26,027 

SI P10 Car   $30,611 $28,032 $26,674 $25,153 

SI P20 Car   $34,788 $30,323 $27,827 $25,984 

SI P40 Car   $36,134 $32,986 $29,215 $27,247 

BEV100 Car   $31,136 $27,941 $22,982 $22,000 

BEV200 Car   $48,603 $37,113 $26,935 $25,174 

BEV300 Car   $64,107 $46,285 $30,888 $28,347 

SI Conv Light Truck $21,199 $22,546 $22,101 $23,228 

CI Conv Light Truck  $31,195 $25,219 $25,799 $24,349 

SI HEV Light Truck   $29,953 $28,343 $28,222 $26,927 

CI HEV Light Truck   $32,786 $31,115 $29,186 $28,257 

SI P10 Light Truck   $34,591 $30,932 $29,758 $27,958 

SI P20 Light Truck   $40,124 $33,945 $31,399 $29,155 

SI P40 Light Truck   $46,371 $36,622 $32,811 $30,480 

BEV100 Light Truck   $41,570 $31,312 $26,259 $24,995 

BEV200 Light Truck   $58,167 $42,855 $31,663 $29,273 

BEV300 Light Truck   $78,304 $54,397 $37,068 $33,551 
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Table 4 Probability Distributions for Model Parameters Used in Monte Carlo Simulation 

 

No. Parameters  Distribution  Min Mean Max 

1 Gasoline and diesel price multiplier Triangle 0.5 1 1.5 

2 Years of acceleration for Battery Cost Reduction Triangle -5 0 5 

3 Learning rate multiplier  Uniform 0.5 1 1.5 

4 
 Price elasticities of vehicle choice relative to standard 

assumptions  
Triangle 0.5 1 1.5 

5 Make/Model provision multiplier triangle 0.5 1 1.5 

6 Make/Model diversity value multiplier Uniform 0.5 1 1.5 

7  Value of time ($/hr.)  Triangle $10 $20 $30 

8 BEV range assurance cost multiplier Triangle 0.5 1 1.5 

9 Perceived vehicle life  (yrs.)  Triangle 2.5 5 7.5 

10  Percentage of new car buyers who are early adopters  Uniform 5.0% 10.0% 15.0% 

11  Willingness of early adopters to pay for novel technology ($) Uniform $1217 $2433 $3649 

12  Cumulative sales at which early adopters WTP is reduced by 1/2  Uniform 1,000,000 2,000,000 3,000,000 

13  Early Majority's aversion to risk of new technology ($) Uniform $363 $725 $1088 

14  Cumulative sales at which early majority's risk is reduced by 1/2  Uniform 1,000,000 2,000,000 3,000,000 

15 Late Majority's aversion to risk of new technology ($) Uniform $1915 $3827 $5738 

16  Cumulative sales at which late majority's risk is reduced by 1/2  Uniform 1,000,000 2,000,000 3,000,000 

17 Home Level 2 avail. In 2050 Uniform 25% 50% 75% 

18 Workplace charging avail. in 2050 Uniform 25% 50% 75% 

19 Public charging avail. in 2050 Uniform 25% 50% 75% 

 

 

 

Table 5 Correlation Matrix for Charging Availability Parameters 

Correlations 

Home Level 1 

Avail. 

Home Level 2 

Avail. 

Workplace 

Avail. Public Avail. 

Home Level 1 Avail.  1       

Home Level 2 Avail.  0.5 1     

Workplace Avail.  0.2 0.2 1  

Public Avail.  0.2 0.2 0.7 1 
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